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Figure 1. Dipole antenna 

 

Figure 2. Incident plane wave over the PEC cylindrical antenna [7] 
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Abstract—Finite element method is used for the electric field computation of a dipole 

antenna at the 2400 MHz frequency in the context of Dirichlet and absorbing boundary 

conditions. It shows that the electric field pattern, both in bi-dimensional and polar plots, 

has an omnidirectional property for the dipole antenna. Our results are compared against 

the method of moments with a good agreement. 
 

Index Terms—finite element method, antennas, electromagnetic field, Galerkin, 

excitation, scattering problem, method of moments. 

 

I.  INTRODUCTION 

The finite element method (FEM) is very important for 

engineers, because the fact that solving problems is 

simulated to approach the reality. We can predict behavior 

of physical phenomena by using actual computers 
capacities. Indeed, for engineer sciences, we create a 

mathematical model following four steps: (i) building a 

geometry, (ii) discretizing the obtained domain, (iii) 

solving the governing equations, and (iv) dealing with the 

appropriate results [1, 2].  

The engineers have to obtain a solution in which time 

resources and creativity are the ultimate aims. To 

investigate the electromagnetic field created near high 

frequency structures, we have to establish several 

parameters and given that the geometry is complex the 

solution of equations governing the system is achieved 
through the use of numerical tools. 

We proceed to model the electromagnetic field radiated 

by a 2400MHz dipole antenna using FEM where we 

minimize the weighted residual, i.e., to have a lowest error 

[1,3-6]. We use a Perfect Electric Conductor model (PEC) 

for the antenna [1], and we generate the electromagnetic 

field with a source of excitation current Jz along z-direction 

over the dipole feed. Then, using Maxwell’s equations [1, 

7] we obtain the wave equation which models the electric 

field. Thus, the incident wave to the cylindrical antenna is a 

transverse magnetic plane wave along the z-axe. This wave 

interacts with the excited structure and can be modeled as a 
scattering problem.  

The plan of this work is as follow: first (section II), we 

describe the mathematical model proposed to deal with a 

cylindrical dipole antenna by FEM at 2400MHz frequency, 

second (section III), we present and discuss our results, and 

compare them with other results, particularly the Method of 

Moment (MoM), and we end with conclusion. 

 

 

 

 

II.  METHOD AND NUMERICAL EXPERIENCE 

A.  Inhomogeneous Scalar Wave Equation 

A uniform transverse magnetic plane wave TMz is 

incident wave over the cylindrical antenna which has the 
radius a. The electric field is given by, 
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where the incident plane wave over the antenna is oriented 

according to x-axe. Note that zâ is the unit vector along the 

z-direction, E0 is the plane wave amplitude, k0 is the 

propagation constant in free space, ρ is the radial distance 

between the center cylinder and the observation point, and 

ϕ the corresponding angle measured from the positive x-
axe, as shown in Fig. 1 and Fig. 2.  

The total field (incident and scattered field) is obtained 

at a distance ρ=60 mm to the cylinder center. This problem 

is governed by the time-harmonic Maxwell’s equations [1, 

7]. The total electric field is z-directed, then, there will be 

no field variations along the z-direction, 
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The wave equation governing this structure is given by 

the well-known inhomogeneous Helmholtz equation or 

inhomogeneous scalar wave equation with non-zero right 

hand side term [1] 
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Thus, the Galerkin’s Technic [5] for solving this type of 

second order partial differential (3) is shown below. 

B.  Galerkin’s Technic 

In order to have a Galerkin like-equation, 
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we assume from (3) that  

.,

,
1

,

0

2

0 zr

r

yxz

Jjgk

Eu









 (5) 

The weighted residual 
er  for a single element over the 

domain Ωe is defined as the difference between the left 

hand side terms and the right hand side term of (4), 
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As outlined above, our aim is to minimize this weighted 

residual, i.e., to have a lowest error as in the literature 

references.  

By multiplying this residual, (6), with a weight 

function w , integrating over the domain Ωe, and putting the 

integral equal to zero, we obtain 
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Using the Green’s Theorem and replacing the weight 

function w  and u by the shape function Ni and 
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which can written in a matrix form as 
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and in a more compact form 
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C.  Dirichlet Boundary conditions 

The total electric field tangential to the PEC surface Γ1 

must vanish [1]. Thus, on the cylinder antenna boundary 

where radius a=0.6045 mm [8], we choose total z-directed 

field equal to zero, 
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Figure 3. The horizontal plane mesh 

 

Figure 4. The horizontal plane mesh 

10  overEz
.    (16) 

This zero value is imposed for implementing the code in 

Matlab language and for each node lying on Γ1. 

D.  Absorbing Boundary Conditions (ABC) 

We truncate the geometry at ρ=60 mm, because the 

calculator is limited, and we must have the physical 

continuity of propagation at the same time, without any 

reflection or refraction at the fictitious boundary, that can 

perturb our simulation. For this, we use a kind of boundary 

conditions, noun as ABC which are the third kind or mixed 

boundary conditions, in the following form 

2



overqu

u



 .    (17) 

The ABC used in this work are the first order as 

described in Refs. [9-13]. 

III. RESULTS AND DISCUSSIONS  

A.  Mesh Generation 

We use a double precision variable position p, that 
contains the x and y coordinates. This positions are 

generated by the Persson’s mesh generator [14], which we 

ameliorate and adapt [15] to our geometry for the 

horizontal plane, shown in Fig. 3. We use two circular 

shapes, first one has a radius a=0.6045 mm and contains 

eight nodes at the Dirichlet boundary Fig. 4. Second circle 

has a radius ρ=60 mm and corresponds to the virtual 

boundary of the system where we impose the ABC. In this 

boundary we obtain 56 nodes, as shown in Fig. 3. We use 

for the mesh generation the adaptive Delaunay 

triangulation [15] and we begin with an edge size equal to 

0.5 mm. The mesh quality obtained is equal to 0.7980. The 

number of nodes generated is equal to 1330 and the 

elements number is 2592, done after 1541 iterations in 

66.9301s.  
For the vertical plane, we use two identical rectangular 

shapes with a gap equal to 0.125 mm, as shown in Fig. 5 

and Fig. 6. This two rectangles are modeled inside a 

circular shape, which play the same role of ABC boundary, 

where ρ=60 mm. The rectangular shapes have a size equal 

to 30.225 mm  1.209 mm. It is important to note that we 
have chosen a distance between the dipole and the ABC 

boundary equal to λ/4 [16]. We generate our mesh over this 

shape Fig. 6, and we obtain 2361 nodes, which give 3599 

triangular elements. For the Dirichlet boundary we obtain 

1088 nodes, and for the ABC we obtain 34 nodes. We 

begin the adaptive Delaunay triangulation with an edge size 

equal to 0.1 mm. The mesh quality obtained is equal to 
0.0242. The mesh is obtained after 16340 iterations in 

226.3033 s. Note that TAB. I. summarizes all 

TABLE I. 

MESH GENERATION DETAILS AND CPU TIME 

CPU Time for Mesh 

Generation 

Hor. plane 66.9301 s 

Ver. Plane 226.3033 s 

Mesh Quality 

 (finesse) 

Hor. Plane 0.7980 

Ver. Plane 0.0242 

Error Tolerance (ε) 0.01 

Iterations 
Hor. Plane 1541 

Ver. Plane 16340 

Elements Shape (simplexes) Triangular 

Triangulation Method Adaptive Geometrical Delaunay  

Initial Edge Size 
Hor. Plane 0.5 mm 

Ver. Plane 0.1 mm 

Shapes 

Circle 1 Radius 60 mm 

Circle 2 Radius 0.6045 mm 

Rectangle 1 30.225x1.209 mm 
Rectangle 2 30.225x1.209 mm 

Nodes Number (positions P) 
Hor. Plane 1330 

Ver. Plane 2361 

Simplexes Number (t) 
Hor. Plane 2592 

Ver. Plane 3599 

Dirichlet Boundary Nodes 

Number 

Hor. Plane 8 

Ver. Plane 1088 

ABC Boundary nodes 

Number 

Hor. Plane 56 

Ver. Plane 34 
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Figure 5. The vertical plane mesh 

 

 
(a) (b) 

 

Figure 6. The vertical plane mesh: (a) Gap distance between the 
rectangles and (b) Details about the dipole mesh 

 

 

Figure 7. The horizontal plane contour plot of the total electric field 

based on a finite element solution 

 
Figure 8. The vertical plane contour plot of the total electric field 
based on a finite element solution 

information related to mesh generation of this work. 

B.  Finite Element Solution 

Once we obtain coordinates, positions, and simplexes 

arrays we proceed to implement our finite element solution 

by choosing the different parameters and implement the 
procedure given in the section above. The code used was 

created by Polycarpou [1]. We ameliorate this code by 

choosing proper implementations for the boundary nodes 

selection and we adapt this code to simulate effects of 

electric density excitation [4].  

We choose μr and εr equal to one, according that the 

antenna radiates in free space [17]. The amplitude 

E0=1V/m, k0=2π/ λ, and since we are modeling 2400 MHz 

dipole antenna, λ=120.9 mm. 

We simulate our antenna model for the horizontal plane 

and the vertical plane. We obtain results after 0.5907 s for 

the horizontal plane, and 13.1482 s for the vertical plane. 
The solution is obtained by the use of LAPACK library 

incorporated in Matlab. Finite element results are shown in 

Fig. 7 and Fig. 8. 

In parallel to the finite element dipole antenna modeling, 

we simulate an electric field radiated by a dipole antenna, 

with the 4NEC2 software [8], which uses the method of 

moments (MoM) [18,19], and we compare our results with 

those obtained by the MoM simulation, as shown in Fig. 9. 

 

The maximum amplitude of the electric field is 70 V/m 

for the horizontal plane, Fig. 7. This is conforming to the 

MoM result, as shown in Fig. 10(b). For the vertical plane 

Fig. 8, we obtain the maximum amplitude for the electric 

field equal to 63.17V/m.  

Fig. 9(a)-(b) show that the polar plot of our dipole 

antenna has an omnidirectional pattern. This antenna is not 

directive in the horizontal plane, and directional at any 

orthogonal plane. This kind of antennas has a space filter 

behavior.  Because of the antenna symmetry around z-axe, 

the radiation is omnidirectional, and present a linearly 
polarization of the electric field.  

Fig. 8 shows the vertical plane contour plot of the total 
electric field based on finite element solution, and Fig. 9(c) 

shows the polar plot of the total electric field and it is in 

good agreement with the electric field obtained by the 

MoM method shown in Fig. 9(d). 

The simulation based on the MoM method was 

successful with the use of the notepad card. In fact, the 

4NEC2 software uses a card which contains all information 
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(a)                                                                                                (b) 

 

                          
(c)                                                                                               (d) 

Figure 9. The polar plot of the total electric field for the horizontal plane: (a) finite elements solution, (b) moments method solution. The 

polar plot of the total electric field for the vertical plane: (c) finite elements solution, (d) moment’s method solution 

 

 

                   
 

(a) (b) 

 

                    
 

(c) (d) 

 

Figure 10. (a) 4NEC2 antenna geometry model. (b) Horizontal plane 

interpolation plot of the total electric field based on a MoM solution. (c) 

Tridimensional electric field pattern. (d) Polar plot of electric pattern in 

both horizontal and vertical plane.  

TABLE II. 

CARD USED TO SIMULATE THE DIPOLE ANTENNA BASED ON THE MOM 

SOLUTION 

 
 related to geometry, frequency, material, ground, and 

excitation. For our simulation we use the card shown in 

TAB. II. 

For the MoM model we used a half wavelength, and we 

choose radius equal to 0.6045 mm, geometry model is 
shown in Fig. 10(a). The current source has a real part 

equal to 1A, no imaginary part, and a magnitude equal to 

1A, the phase is equal to zero.  

According to our antenna problem, frequency is equal to 

2400 MHz, which radiates in free space. The MoM 

simulation is generated over a tridimensional free space 

according to the x, y and z axes as shown in Fig. 10(c), 

where the total electric field pattern presents the 

omnidirectional characteristic of half wavelength dipole 

antennas. Fig. 10(d) shows the polar plot for both 

horizontal and vertical electric field, and the maximum 

corresponds to E=70 V/m. 
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IV. CONCLUSIONS 

By using a fine description and implementing the Matlab 

code for the finite element at 2400 MHz dipole antenna 

modeling. We obtain results, which are comparable to 

those existing in literature and with those obtained with the 

MoM 4NEC2 software. This work can be used as the start 

for more complicated geometry antennas and more 

specifically electromagnetic antenna problems. The work 

made is a solution for the engineering need. We show that 

the minimization of the weighted residual tend to decrease 
the problem difficulty. 
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